taylor expansion meaning in Chinese
泰勒展开式
展开
Examples
- This is analogous to the successive approximation given by the terms of a taylor expansion .
这类似通过泰勒法展开各项所给出的逐次逼近法。 - The random responses of local multiaxial stress and strain were accurately calculated by the taylor expansion elastoplastic stochastic finite element method under cyclic loading
交变载荷下taylor展开弹塑性随机有限元可精确计算局部多轴应力应变的随机响应。 - Second , in luminescence materials hole or electron concentration will change with the doping content . so we expand the hole or electron concentration in taylor expansion and calculat the optimum doping contents . for several semiconductor materials such as zns : mn , silicon doped er and gaas , gap , gan doped different materials , we calculat their optimum doping contents which arc close to some experimental results
应用该表达式,给出了各种不同的制备方法zns掺mn 、硅基掺铒、以及gaas 、 gap 、 gan掺不同元素制出的发光材料,对最佳掺杂含量进行了理论上的计算,理论计算值与实验数据相符合。 - In the final chapter , we discuss interval polynomial approximation of rational surfaces . firstly , we briefly state the interval - surface approximation based on the taylor expansion , and later , we give out a better interval - surface approximation based on the optimization method , which is also the main work of this paper
第四章主要介绍了有理曲面的区间多项式的逼近,首先简单介绍了基于泰勒展开来做的区间曲面逼近,后面是本文的主要工作,我们基于优化方法得到了更好的区间曲面逼近,它也是本文的重要部分。 - We compare the approximation of an analytic function f by its taylor polynomial and its poisson partial sum with the same number of terms and illustrate that for functions with limit zero at infinity and for bounded functions the poisson expansion provides a better approximation to the function than the taylor expansion
在第三章中,介绍了rb曲线与poisson曲线的概念以及基本的几何性质,指出了poisson基函数与有理bernstein基函数之间存在的关系,并且将解析函数的taylor逼近与poisson逼近进行比较。实例表明,对于在无穷远处极限为0的函数以及有界函数, poisson逼近比taylor逼近效果要好。